【摘 要】
:
一维纳米材料具有众多优异的特性,是构建微纳米功能性器件的基石.实现一维纳米材料在二维和三维空间的高精度和高定向组装是充分发挥其应用潜力的关键,同时也是制造难点.在众
【机 构】
:
华中科技大学光学与电子信息学院武汉光电国家研究中心,湖北武汉430074;清华大学机械工程系,教育部先进材料加工技术重点实验室,摩擦学国家重点实验室,北京100084
论文部分内容阅读
一维纳米材料具有众多优异的特性,是构建微纳米功能性器件的基石.实现一维纳米材料在二维和三维空间的高精度和高定向组装是充分发挥其应用潜力的关键,同时也是制造难点.在众多纳米材料组装技术中,飞秒激光直写诱导组装技术具有独特优势,可实现一维纳米材料在任意三维结构中的可设计、高定向及高精度的组装.首先简要介绍了一维纳米材料组装研究的背景,并总结了非激光直写组装技术的研究现状和存在的挑战,然后较详细介绍了飞秒激光直写技术在一维纳米材料组装研究中的进展,重点回顾了金属(包括Au和Ag纳米线)、半导体(包括CNTs和ZnO)一维纳米材料的飞秒激光直写组装及微纳光电子功能器件的制造.并讨论了诱导一维纳米材料定向排布的光学力和非光学力(包括剪切力、体积收缩应力和空间限制)的作用机理,理论计算和实验研究结果验证了飞秒激光诱导的非光学力作用是导致一维纳米材料定向排布的主要原因.最后探讨了目前飞秒激光组装技术面临的一些问题和未来在高精度纳米材料组装和三维功能器件集成方面的发展趋势.
其他文献
980 nm波段掺镱光纤激光器在高亮度抽运源和蓝绿光源方面具有广泛的应用前景.首先介绍了980 nm波段连续光纤激光器的研究价值、研究难点.然后,介绍了国内外研究机构在980 nm
光学玻璃以其优异的物理性能被广泛应用于航天、信息、能源、化工、微电子等领域.随着这些领域的不断发展,传统技术已无法满足日新月异的光学元件超光滑表面加工的要求.为此,
熔池/匙孔区域包含丰富的激光焊接质量信息,基于该区域对熔透状态进行准确识别对于激光焊接的在线控制至关重要.针对熔池区域存在蒸汽和飞溅等干扰且相邻的熔透状态之间特征
实现纳米材料焊接的纳米连接技术不仅是研制高性能纳米器件的关键,还是“自下而上”进行纳米结构制造的重要手段,决定着新一代纳米器件的性能及可靠性。其中,纳米钎焊技术对焊接母材损伤小,可以连接同种或不同种类的纳米材料,并获得优异的力学及电学性能,是纳米连接技术的重要发展方向。基于分子动力学,对纳米颗粒钎料在SiO2基底上的激光熔融过程进行了仿真分析,分析了激光辐照导致的不同温度下银纳米颗粒的原子构型变化,并探究了钎料熔融过程。为了探讨基底对熔化过程的影响,进一步分析了基底与纳米颗粒之间的接
研究光与物质相互作用是腔量子电动力学的一个重要方向.早在20世纪50年代,黄昆先生就提出了固体环境中的光子与晶格连续作用的时间演化图像,并指出光子-声子时间上连续不断的相互转化会在物质中形成声子极化激元波,从理论上计算了声子极化激元波的色散关系. Hopfield把这种图像推广到半导体环境中的光子-激子作用上.随后人们在微腔中实现了单原子、单量子点激子的真空拉比振荡.随着半导体微腔生长和微纳加工工