论文部分内容阅读
风电在电网系统中的成功整合与应用需要风电机组或风电场产生的风电信息,又因为风速具有不可预测性、间歇性和非线性等特性,所以准确预测非常具有挑战性。因此,本文提出了一种基于互补经验模态分解(CEEMD)与CSO优化神经网络预测模型相结合的短期风速预测的新方法,来达到更优的预测效果。在本文中,CEEMD用于将风速数据分解为多个固有模态函数(IMFs)来进行预测;然后对所有分量建立纵横交叉算法优化极限学习机(CSO-ELM)的预测模型;最后叠加所有序列的预测值作为最终的预测结果。本文对荷兰某风电场的实测小时风速数