论文部分内容阅读
一直以来,如何准确便捷地监测能见度都是减少交通事故工作关注的重点所在,而传统的使用能见度仪检测能见度存在造价高、范围小等缺陷。随着深度学习研究的不断发展,使用深度学习估算能见度也变成现实。本文建立了一种VGGnet 16卷积神经网络模型,经过Dropout(丢弃层)和数据增强优化后,使用监控图像及其对应的能见度值对其进行训练。结果表明,优化后的模型能有效提升训练精度,在小数据集上也能实现非常好的能见度估算效果。