论文部分内容阅读
通过把BP神经网络与隐式曲面构造原理相结合,提出构造隐式曲面的新方法.用约束点来描述、控制曲面形状,构造BP网的输入与输出,通过智能学习、仿真模拟,最后从仿真超曲面抽取出的零等值面就是隐式曲面.同时,从理论上证明了此方法所构造的隐式曲面具有任意精度.实验表明该方法对约束点的个数、误差、内外点与边点的距离等不敏感,表现出很好的稳定性与可操作性.该构造方法不仅可用于构造隐式曲面,而且在图形理解、数据分类等领域也具有良好的应用前景.