【摘 要】
:
大数据背景下层出不穷的隐私泄露问题,为现实发展提出了新要求。就个人信息保护而言,本文深入剖析信息泄露背后所涉及的法律现象,当下保护个人信息方面存在的问题,从公民意识、国家监管、行业责任等多元主体的角度寻求应对之策。与时俱进,建构具有中国特色的隐私保护体系。
论文部分内容阅读
大数据背景下层出不穷的隐私泄露问题,为现实发展提出了新要求。就个人信息保护而言,本文深入剖析信息泄露背后所涉及的法律现象,当下保护个人信息方面存在的问题,从公民意识、国家监管、行业责任等多元主体的角度寻求应对之策。与时俱进,建构具有中国特色的隐私保护体系。
其他文献
超薄壁材料广泛应用于航空航天、医疗器械、集成电路等重要行业和关键领域,具有不可替代的作用。由于材料薄,传统成形技术加工超薄壁材料,存在加工难度大,易变形、易冲破等难题,已远远不能满足超薄壁材料的成形需求。激光冲击微成形技术采用激光作为成形工具,利用脉冲激光产生的等离子体爆轰波使材料发生塑性变形,具有加工效率高、成本低、柔性好等优势,在超薄壁材料的成形加工中受到关注,但也存在烧蚀和绝热剪切失效现象,
随着工业化的不断深入和生产力的持续增长,人类对于能源的需求不断增加。在世界能源消费构成中化石燃料占据了绝大部分比例,而化石燃料的不断开采和使用,也导致了全球性的能源危机日益加重,因此,新能源的开发迫在眉睫。在众多新能源中,氢能因具有可再生、来源广、燃烧值高、产物为水无污染等特点,被认为是一种最理想的化石燃料替代能源。近年来,利用太阳能将自然界中的水分解为氢气的光催化产氢技术被认为是一种廉价、可行的
以微胶囊化叶黄素微粒为原料,研究开发一种叶黄素软糖。通过单因素实验分析了叶黄素、凝胶剂、甜味剂、酸味剂、柳橙汁的添加量对叶黄素软糖的风味、口感、色泽和组织形态等感官品质的影响。并通过正交试验,确定了叶黄素软糖的最佳配方。结果表明:叶黄素微粒的添加量为0.2%;凝胶剂为明胶,添加量为15%;复合甜味剂白砂糖:葡萄糖浆为1∶1;复合酸味剂柠檬酸:DL-苹果酸为3∶2,添加量为3%;柳橙汁添加量为12%
提高发电端可再生能源和终端电能的使用比例是解决我国能源和环境问题,实现低碳发展的关键。本文提出了在发电端通过无碳铝电解技术把风能和太阳能产生的电能转化为化学能储存在金属铝中,实现可再生能源的消纳,在使用终端通过铝空气电池技术将铝中的化学能转化为电能加以利用的以铝为能量载体的能量循环过程即“电-铝-电”铝储能理念。同时在储能-应用的生命周期内与以氢为能量载体的氢储能和以锂离子电池为能量载体的电化学储
随着信息隐私的载体从线下发展到线上的网络与算法场景,我国信息隐私的功能也在变迁:从以控制人格图像为主的名誉隐私,发展到以信息自主决定为主的网络信息隐私,再到融合了信息自主决定和控制人格图像双重功能的算法隐私。为清楚界定算法隐私的边界,采取历史分析、文化分析和功能分析的研究方法,探讨信息隐私和个人信息保护标准的异同。信息隐私涉及不同社会的文化差异,国际标准难以统一,应采本土化标准。个人信息通常不涉及
随着全球能源与环境压力的加剧,以石油产品为代表的不可再生资源回收利用受到许多国家的高度重视,发展油品净化技术、实现可持续发展受到相关行业的普遍关注。液压润滑系统广泛应用于机械、动力等工业设备中,运行时产生大量的杂质颗粒等污染物,极易造成设备故障,企业普遍采用油品整体更换或在线净化的方法,资源消耗大且造成严重的环境污染。静电净油技术因其无耗材、环保等特点,近几年在航空液压油、变压器油等污染度较低的油
稀土元素掺杂发光材料发展迅速,在荧光粉、显示器、X射线成像、激光器和光纤通信放大器等方面有着非常广泛的应用。并且人们在后来的研究中发现将Yb3+离子作为敏化离子与稀土离子(Er3+,Tm3+等)共同掺杂时可以实现稀土离子在低频光的激发下辐射出高频光,即著名的频率上转换效应,该效应为低能量的长波光的利用提供了可能。但是由于稀土元素的辐射能级较多,从可见到红外波段会产生各种不同波长的辐射光,如何调控这
目的限制原则作为个人信息处理的基本原则,要求信息处理活动不得溢出信息收集时的初始目的,以保障信息主体对个人信息的自主控制与支配。然而,大数据时代个人信息的多维度利用日趋常态化与复杂化,导致信息处理目的难以在信息收集阶段完全确定下来,严格的目的限制原则忽视了个人信息的利用价值。信息保护与信息利用均为法律追求的价值目标,不能顾此失彼,因此,有必要在个人信息类型化视角下重塑目的限制原则的规范内涵。申言之
预处理可以改善餐厨垃圾原料结构,提高产甲烷潜力。纤维素降解困难是影响餐厨垃圾厌氧发酵产甲烷效率的限制性因素之一。本文筛选出了3株纤维素降解菌株,分别标记为Z1、Z2、Z3。利用细胞培养、形态学特征及18sr DNA序列分析,确定3株菌分别属于米根霉(Rhizopus oryzae)、黑曲霉(Aspergillus niger)和米曲霉(Aspergillus oryzae)。命名为米根霉(Rhiz
苹果营养丰富,味道甜美,是人们经常食用的水果之一,但其采后易受病原菌侵染,从而造成巨大的经济损失。其中由扩展青霉(Penicillium expansum)引起的苹果采后青霉病是导致苹果腐烂的主要原因之一。目前,P.expansum侵染苹果机制的研究还处于起步阶段,P.expansum侵染苹果过程中最关键的致病因子尚不明确,这严重影响了人们对P.expansum侵染苹果机制的认识。本文针对学术界对