论文部分内容阅读
针对水体对光的吸收和散射导致的水下图像细节模糊和颜色失真等问题,提出了一种基于多尺度生成对抗网络的水下图像增强算法。该算法用对抗网络作为基础框架,结合残差连接和密集连接加强水下图像特征的传播。首先,通过两个并行支路提取退化图像不同空间的视觉信息,并在每个支路加入残差密集块,以学习更深层次的特征。然后,将两个支路提取的特征进行融合,经过重建模块恢复图像的细节信息。最后,构建多个损失函数,反复训练对抗网络,获得增强的水下图像。实验结果表明,本算法增强的水下图像色彩鲜明且去雾效果较好,水下彩色图像质量均值