论文部分内容阅读
实施素质教育,培养学生在数学学科上的创新思维、塑造健康人格是当今教育和教学正在研究的重要问题。江泽民说过:“创新是一个民族的灵魂,是国家兴旺发达的不竭动力。”创新思维是创新过程中的思维活动,是指具有一定的自身价值或认识意义的新颖独到的思维活动。在数学教学中,大量的创新思维主要指“再发现”式的,通过学生自己的独立思维活动解决问题的过程。我认为:数学创新思维的培养,其关键在于激发学生创造性思维的发生机制,可以从下列几个方面展开:
一、在课堂教学中创设情境,引导和培养学生的观察能力
苏霍姆林斯基说:“观察是智慧的重要能源。”观察能力是发现问题,思考问题,培养发展创新能力的基础。怎样培养学生的观察力?首先,要创设良好的问题情景,培养学生深厚的观察兴趣;其次,在观察前,要给学生提出明确具体的目的、任务和要求;第三,要引导学生根据观察的对象有序进行观察,及时对观察结果进行分析总结;第四,要科学地运用直观教具和现代教学技术,以支持学生对研究问题做细致深入的观察。
二加强学生的探索能力,激发创新思维
在教学中设计一些探索性问题,有利于培养学生思维的广阔性,灵活性,有利于培养学生的创新能力和创新意识。因为这一类问题是在给定条件下探索不明确的结论或由给出结论探求满足该结论所需要的条件;并且在同一条件下往往可以得出许多不同的结论,得出同一结论的条件也往往不只一种;证明一个结论的方法也往往不只一种。
亚里士多德曾经说过:“思维从问题、惊讶开始。”“疑”在心理学中称为“怀疑感”,它是对现有理论的探求,并加以评价的体验,不断探索未知领域的怀疑是未来人才不可缺少的可贵心理品质,而引疑的关键是教师善于设疑。宋代朱熹也说过:“读书无疑者,须教有疑”。因此成功地创设情境,教师不断给学生思维的契机,处处设疑、激疑、释疑,不断促使学生强烈的需要和动机,从而改变被动状态,主动学习,独立思考。2发展学生空间想象能力,促进创新思维
三、引导学生展开丰富的想象,激发学生主动探索不断创新
想象是创新的翅膀,是从模仿到创造的阶梯。黑格尔说过:“最杰出的艺术本领就是想象”。学习过程是对信息进行加工、储存和在需要时提取出来加以运用的过程。教学过程是使学生掌握数学基本知识和基本技能,并使所学知识与方法系统化、条理化。
数学想象一般有以下两个基本要素:第一,因为想象往往是一种知识的连结,所以要有扎实的基础知识和丰富的经验的支持;第二,要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。因此,培养学生的想象力,首先要使学生学好有关的基础知识,其次,要引导学生寻找新旧知识的联系点,诱发学生的创选性想象。
三、加强思维训练,引导提高学生勇于求异的创新意识
课堂教学要鼓励学生大胆创新,勇于求异,激发学生创新欲望。学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、多变,训练学生多元化地思考,在探索与求异中发现和创新。发散思维的训练可以通过对数学问题的演变进行变式训练,具体可以采用如下方式:
1.一题多解式,对同一问题尽可能地鼓励学生超越常规,提出多种设想和解答。2.一题多变式,课堂教学要常新、善变,通过原题目延伸出更多具有相关性、相似性、相反性的新问题,深刻挖掘例题和练习题教育功能,培养学生创新能力。中
3.多题一解式,学生从许多问题发现其共性,对这样的问题不断总结、积累,加深学生对知识内在本质的理解,提高分析问题、解决问题的能力。
四培育新问题,提高创造性思维
把经过调整组合而成的新的结构,新的题型称为新问题,如开放题,实际问题的数学建模等。学生对培育新问题的解决实质上就是创新能力的体现。作为教师精心创设新颖有趣、引人入胜的问题,诱发学生学习动机,启迪思维,激发求知欲望,使学生能自觉调整或改变原有的认识结构,接受新知识,解决新问题,不断提高创新思维的质量。而且开放题具有足够的灵活性,让学生在观察、猜测,动手等一系列活动中探索,最大限度地给学生创造思维自由驰骋的时间和空间,使学生的思维得到延伸,发散,拓宽
心理学家皮亚杰指出:“教育的首要目标在于培养有能力创新的人,而不是重复前人所做的事”。因此笔者认为摆在每一个数学教师面前最重要的课题是如何从以“例题教学”为核心的传统数学教育,转变为培养学生创新能力的数学教育。
一、在课堂教学中创设情境,引导和培养学生的观察能力
苏霍姆林斯基说:“观察是智慧的重要能源。”观察能力是发现问题,思考问题,培养发展创新能力的基础。怎样培养学生的观察力?首先,要创设良好的问题情景,培养学生深厚的观察兴趣;其次,在观察前,要给学生提出明确具体的目的、任务和要求;第三,要引导学生根据观察的对象有序进行观察,及时对观察结果进行分析总结;第四,要科学地运用直观教具和现代教学技术,以支持学生对研究问题做细致深入的观察。
二加强学生的探索能力,激发创新思维
在教学中设计一些探索性问题,有利于培养学生思维的广阔性,灵活性,有利于培养学生的创新能力和创新意识。因为这一类问题是在给定条件下探索不明确的结论或由给出结论探求满足该结论所需要的条件;并且在同一条件下往往可以得出许多不同的结论,得出同一结论的条件也往往不只一种;证明一个结论的方法也往往不只一种。
亚里士多德曾经说过:“思维从问题、惊讶开始。”“疑”在心理学中称为“怀疑感”,它是对现有理论的探求,并加以评价的体验,不断探索未知领域的怀疑是未来人才不可缺少的可贵心理品质,而引疑的关键是教师善于设疑。宋代朱熹也说过:“读书无疑者,须教有疑”。因此成功地创设情境,教师不断给学生思维的契机,处处设疑、激疑、释疑,不断促使学生强烈的需要和动机,从而改变被动状态,主动学习,独立思考。2发展学生空间想象能力,促进创新思维
三、引导学生展开丰富的想象,激发学生主动探索不断创新
想象是创新的翅膀,是从模仿到创造的阶梯。黑格尔说过:“最杰出的艺术本领就是想象”。学习过程是对信息进行加工、储存和在需要时提取出来加以运用的过程。教学过程是使学生掌握数学基本知识和基本技能,并使所学知识与方法系统化、条理化。
数学想象一般有以下两个基本要素:第一,因为想象往往是一种知识的连结,所以要有扎实的基础知识和丰富的经验的支持;第二,要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。因此,培养学生的想象力,首先要使学生学好有关的基础知识,其次,要引导学生寻找新旧知识的联系点,诱发学生的创选性想象。
三、加强思维训练,引导提高学生勇于求异的创新意识
课堂教学要鼓励学生大胆创新,勇于求异,激发学生创新欲望。学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、多变,训练学生多元化地思考,在探索与求异中发现和创新。发散思维的训练可以通过对数学问题的演变进行变式训练,具体可以采用如下方式:
1.一题多解式,对同一问题尽可能地鼓励学生超越常规,提出多种设想和解答。2.一题多变式,课堂教学要常新、善变,通过原题目延伸出更多具有相关性、相似性、相反性的新问题,深刻挖掘例题和练习题教育功能,培养学生创新能力。中
3.多题一解式,学生从许多问题发现其共性,对这样的问题不断总结、积累,加深学生对知识内在本质的理解,提高分析问题、解决问题的能力。
四培育新问题,提高创造性思维
把经过调整组合而成的新的结构,新的题型称为新问题,如开放题,实际问题的数学建模等。学生对培育新问题的解决实质上就是创新能力的体现。作为教师精心创设新颖有趣、引人入胜的问题,诱发学生学习动机,启迪思维,激发求知欲望,使学生能自觉调整或改变原有的认识结构,接受新知识,解决新问题,不断提高创新思维的质量。而且开放题具有足够的灵活性,让学生在观察、猜测,动手等一系列活动中探索,最大限度地给学生创造思维自由驰骋的时间和空间,使学生的思维得到延伸,发散,拓宽
心理学家皮亚杰指出:“教育的首要目标在于培养有能力创新的人,而不是重复前人所做的事”。因此笔者认为摆在每一个数学教师面前最重要的课题是如何从以“例题教学”为核心的传统数学教育,转变为培养学生创新能力的数学教育。