论文部分内容阅读
提出一种新的结合了模糊c-均值聚类(FCM)算法和可能性c-均值聚类(PCM)算法优点的联合模糊c-均值聚类(AFCM)算法。它克服了PCM对初始值敏感、易产生一致性聚类的缺点,是PCM的扩展算法。试验表明:AFCM能同时产生隶属度和典型值,从而更好地处理噪声,避免了一致性聚类,同时提高了聚类准确性。