改进U-Net网络的遥感影像道路提取方法研究

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:banbe0602
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
从遥感影像中提取道路目标对智慧城市建设具有重要意义。由于遥感数据中道路及背景特征复杂多样,使用深度学习方法对道路进行提取的准确性仍然受到限制。基于U-Net网络架构设计实现了用于遥感影像道路提取的深度语义分割模型AS-Unet,该模型分为编码器和解码器两部分。在编码器部分加入通道注意力机制,对提取的丰富低层特征进行筛选,突出目标特征,抑制背景噪声干扰,从而提高深浅层信息融合准确率;为解决网络对道路目标单一尺寸的敏感问题,在编码器最后一层卷积层后面加入空间金字塔池化模块来捕获不同尺度道路特征;在解码器
其他文献
针对雾天车牌图像模糊、车牌识别率低的问题,给出了车牌图像色彩迁移与正则化约束去雾算法。算法主要包含色彩迁移去雾和文本修复两个模块。采用MKL(Monge-Kantorovitch Linear Colour Mapping)色彩迁移算法,恢复雾天车牌颜色信息实现去雾;利用车牌的文本像素的强度和梯度特征对车牌图像进行正则化约束,实现车牌中文本的修复。实验结果表明,无论针对合成车牌雾图还是自然车牌雾图
针对视频图像连续帧间的目标具有冗余性,采用手动标注方式耗时耗力的问题,提出一种融合检测和跟踪算法的视频目标半自动标注框架。利用手动标注的样本离线训练改进YOLO v3模型,并将该检测模型作为在线标注的检测器。在线标注时在初始帧手动确定目标位置和标签,在后续帧根据检测框与跟踪框的IOU(IntersectionOver-Union)值自动确定目标的位置,并利用跟踪器的响应输出判断目标消失,从而自动停
结合国家政策背景及导向,分析工程监理及咨询行业新的业务市场;通过监理企业开展政府购买的监理巡查服务的案例分享,总结监理企业优势,提出监理开展这项工作的要点和注意事项,以期为监理企业开展政府购买的监理巡查服务提供参考.