论文部分内容阅读
近年来,Powershell由于其易用性强、隐蔽性高的特点被广泛应用于APT攻击中,传统的基于人工特征提取和机器学习方法的恶意代码检测技术在Powershell恶意代码检测中越来越难以有效。本文提出了一种基于随机森林特征组合和深度学习的Powershell恶意代码检测方法。该方法使用随机森林生成更好表征原始数据的新特征组合,随后使用深度学习神经网络训练并进行分类识别。该方法可以弥补人工特征工程经验不足的问题,更好表征原始数据从而提高检测效果。本文实验结果显示,利用本文提出方法构建的Powershell恶意