论文部分内容阅读
研究了在Dirichlet边界条件和Neumann边界条件下一维sine-Gordon方程的混合有限体积元方法.通过引入将试探函数空间映射到检验函数空间的迁移算子γh,结合混合有限元方法和有限体积元方法,构造了半离散格式,时间显式和隐式全离散混合有限体积元格式.给出了显格式离散解的稳定性分析,并得到了三种格式的最优阶误差估计.最后,给出数值算例来验证理论分析结果和数值格式的有效性.