论文部分内容阅读
建立了水平Rijke管热声模型,利用Galerkin方法对控制方程组进行展开,实现数值求解.确定了Galerkin模态收敛阶数为10,利用非线性动力学理论对系统进行分岔分析.Rijke管热声系统分岔行为属于亚临界Hopf分岔.系统稳定性区域分为全局稳定、全局不稳定及双稳态区域.获得了无量纲加热功率K,加热器位置xf,阻尼系数c1和时间延迟τ等参数的分岔图谱,发现加热器位置xf的分岔图谱存在两个Hopf分岔点.在线性不稳定区域内,振荡幅值随时间延迟τ的增大呈现先增大后减小的趋势.“,”The thermoacoustic model of a horizontal Rijke tube is established.The governing equations are expanded and solved by using the Galerkin method.The convergence order of Galerkin modes is determined as 10.The bifurcation analysis of the system is carried out by using nonlinear dynamics theory.The bifurcation behaviors of the horizontal Rijke tube thermoacoustic system is found to be subcritical Hopf bifurcation.The system stability regions are divided into globally stable region,globally unstable region and bistable region.The bifurcation diagrams of the non-dimensional heater power (K),the position of the heater (x f),the damping coefficient (c1) and the time delay (τ)are obtained,and the bifurcation diagram of the position of the heater (x f) has two Hopf bifurcation points.In linear unstable region,the amplitude of the oscillation firstly increases and then decreases with the increase of time lag (τ).