论文部分内容阅读
当训练集的规模很大时,一般的支持向量机的学习过程需要占用大量的内存,寻优速度缓慢,不利于实际应用.提出了一种预抽取支持向量的支持向量机调节熵函数法.首先,利用两凸包相对边界向量方法预抽取出边界向量;然后,利用支持向量机调节熵函数法来训练预抽取的边界向量.实验表明,采用这种方法来训练样本集不仅降低了学习的代价,还提高了分类速度.