论文部分内容阅读
强化学习是机器学习领域的一个重要分支,但在强化学习系统中,学习的数量会随着状态变量的个数成指数级增长,从而形成“维数灾”。为此提出了一种基于MAxQ的分层强化学习方法,通过引入抽象机制将强化学习任务分解到不同层次上来分别实现,使得每层上的学习任务仅需在较小的空间中进行,从而大大减少了学习的数量和规模。并给出具体算法——MAXQ—RLA。