论文部分内容阅读
在精密制造业中,切缝宽度对尺寸精度的影响尤为显著,而材料去除率是影响加工效率的最重要指标,其与切缝宽度之间关系复杂且相互制约,一组加工参数难以同时获得较小的切缝宽度和较高的材料去除率。针对此问题,运用BP神经网络与粒子群算法(PSO)的混合算法建立多目标预测优化模型;以Ti6Al4V合金为实验对象,以水压、脉冲时间、脉冲间隙、伺服电压和电极丝张力为工艺参数,以切缝宽度(Kerf)和材料去除率(MRR)为工艺目标,设计田口实验。结果显示,Kerf和MRR的预测平均相对误差分别为5.32%和6.14%,优化得