论文部分内容阅读
Apriori算法是数据挖掘领域挖掘关联规则频繁项目集的经典算法,但该算法存在产生大量的候选项目集及需要多次扫描数据库的缺陷。为此提出一种新的挖掘关联规则频繁项目集算法(CApriori算法):利用分解事务矩阵来压缩存放数据库的相关信息,进而对分解事务矩阵进行关联规则挖掘;优化了由频繁k-1项目集生成频繁k项目集的连接过程;提出了一种不需要扫描数据库,利用行集"与运算"快速计算支持数的方法,改进算法挖掘所有的频繁项目集只需扫描数据库两次。实验结果表明,改进算法在最小支持度较小时效率高于Apriori算法。