论文部分内容阅读
在具有光滑边界的有界区域DR2上,讨论了不可压缩流体的随机2-维纳维-斯托克斯-伯格斯方程du=(Δu+12▽u2+(u·▽)u)dt+dW(t),其中W关于时间是白噪声的,关于空间变量是尽可能一般的高斯型时-空随机向量场;利用Krylov-Bogoliubov判别定理证明了上述方程的不变测度的存在性.
On the bounded region DR2 with smooth boundary, the random 2-V Navier-Stokes-Burgers equation du = (Δu + 12 ▽ u2 + (u · ▽) u) of incompressible fluid is discussed. dt + dW (t), where W is white noise with respect to time, and the space variable is as general as possible Gaussian space-time random vector field. The Krylov-Bogoliubov discriminant theorem is used to prove the existence of invariant measure of the above equation .