论文部分内容阅读
传统的垃圾短信过滤方案,以垃圾短信中出现的敏感词作为判断的依据,却忽略了正常短信中出现的词对分类的贡献,并且由于短信用语的灵活性,特征提取难度较大。提出了一种基于svm算法对垃圾短信进行监控和过滤的方案,该方案根据短信内容、短信长度等特征,对短信文本进行向量空间的表示。通过机器学习的方式,对垃圾短信进行判断,过滤。相比传统方法而言,本系统在过滤准确度和效率两方面均获得大幅度提升。