论文部分内容阅读
针对视频序列中多目标人脸跟踪问题,提出一种基于SURF(Speed-Up Robust Features)特征和KLT(Kanade-Lucas-Tomasi)匹配算法相结合的特征点跟踪方法。通过融合该方法,创新性地设计了一种多人脸跟踪系统框架,在目标出现明显的姿态、尺寸变化,或者遭遇局部遮挡、光照不充分等复杂环境干扰下,能够实现对目标人脸稳定跟踪。通过多组实验数据的对比,证明了该跟踪方法比Mean shift算法、传统KLT算法具有更好的鲁棒性,能获得更精确的运动信息;验证了多人脸跟踪系统能够在复