论文部分内容阅读
摘 要:“数”主要指数及数量关系,“形”主要是指直观图形。数形结合就是通过数与形的相互转化、互相利用帮助学生建立数感;形成概念;理解算理;提高思维能力。本文主要通过教学实践对此深入探讨。
关键词:数形结合;小学数学;数感;算理
“空间与图形”是小学数学教学中的重要内容之一,在以后的学习中体现得更为明显。数形结合带给教学以蓬勃之生命,赋予教学以持续性的活力,使有效教学的策略更丰富,更清晰。
一、营造乐学的有效教学情境
新课改教材里各种鲜艳逼真的情境图,各种平移、旋转、对称的美丽图案,可以让学生真切地体会到了数学的美,受到美的熏陶。因此,在教学《分数的初步认识》时,与学生互相问好后,笔者设计了“分数乐园”这个孩子特别喜欢的卡通画面,可是“智慧大门”却关闭着。生动形象的动画谜语,一下子就吸引了孩子们的目光。成功地激发学生的挑战精神和战胜困难的斗志。学生猜对后,引出生活中分东西的经验,自然而然地导出课题“认识几分之一”。笔者利用信息技术资源,创设了一个生动有趣的故事情境,引出孩子们特别熟悉和喜欢的——“分数乐园里智勇闯三关”的游戏,使学生们的自主参与意识自然而然的产生,主动探索,学习新知。
二、看图说话,先学后导
概念的引入将直接关系到学生对概念的理解和接受,在概念的引入过程中,要注意使学生建立清晰的表象。而表象的建立,是以对所感知材料的观察和分析为基础的。图形演示是小学数学概念引入教学中最常用的方法,因为小学生的思维还停留在形象思维的阶段,他们对抽象的概念的理解需要借助丰富的感性材料。在小学数学概念教学中,如果能够建立抽象的数学概念与形象的图形之间的联系,把数学概念中本质的属性用恰当的图形演示出来,把数和形结合起来,就可以丰富学生的感性材料,为建构数学概念奠定基础。学生对所学数学概念就容易理解和掌握。数形结合就是把抽象的数学语言、数量关系与直观的图形、位置关系结合起来,通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化。俗话说:“数无形,少直观,形无数,难入微”,数和形是数学研究的两个对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化,形象化,简单化,特别是在解决问题过程中借助线段图解决复杂的数量关系;另一方面,復杂的形体可以用简单的数量关系表示。
三、数形结合,不忘操作
根据新课程标准的要求,笔者在本课中设计了“折一折”这个游戏环节。让学生通过自己动手操作折纸,来突破难点,完成“把一个整体平均分成几份,一份就是它的几分之一”的转化过程。学生兴致勃勃地在“折一折”中玩起了折纸游戏,使他们在玩中发现问题,开动脑筋想办法解决问题。同时,笔者还设置了“快乐猜猜猜”的小游戏,让孩子们在玩中体验数学知识,运用数学知识。
(一)强化认识,完整叙述
由平均分实物导出,图形也可以平均分成2份,其中一份就是它的1/2。要求学生利用自己喜欢的图形(包括长方形、正方形和圆)折出它的1/2。引导学生动手操作,在小组合作中解决疑难。通过进行比较交流,说一说:你拿的是什么图形?如何得到它的二分之一?哪部分是它的二分之一。使学生能够完整叙述1/2的含义,提高表达能力。这个过程不但培养了学生的自主学习的能力,激发了学生主动参与的意识,还让他们明白数学无处不在,源于我们的生活。最后,在共同交流,检查所学习的新知识,达到锻炼学生语言表达能力的目的。
(二)动手操作,促进内化
紧接着,顺势引导:你能继续折出这个图形的1/4吗?引发学生继续探索新知的欲望,逐层深入的诱导新知。交流汇报意义后,课件引出长方形的4种不同的折法,引导学生思考:为什么涂色部分都可以用1/4来表示呢?让学生体会到:虽然纸的形状不同、折法不同,但把这张纸都“平均分”成了4份,所以每一份就表示这张纸的四分之一。这个过程由浅入深地逐层深入,学生自主探索,欲望强烈,解决了疑难问题,使他们充分地体验到了成功。
(三)顺势引路,巧妙迁移
认识了二分之一和四分之一,你还想认识几分之一呢?让孩子们乘胜追击,继续研究各种几分之一。顺势教师要求:你能试着折一折,涂一涂表示出你想认识的几分之一吗?拿出学具袋中的材料,每人选择一样试一试。经过折涂,学生之间的交流介绍,让学生展示并解说成果。通过变换板书的数字,引导学生讨论:你发现了什么?师提示:把一个图形平均分成3份,每一份是它的三分之一,那平均分成5份、6份、100份呢?学生总结出:把一个整体平均分成几份,一份就是它的几分之一。锻炼他们语言能力的同时,培养了学生们的逻辑思维能力。
四、分层把握数形结合
低段学生及图形建构差的学生适宜“形→数”的直观思维,其教学大多以观察、操作等活动开始,在感知和积累了大量空间图形的具体形象及抽象化图形后,自然过渡到复杂、抽象的图形学习。高段的学生适宜“数→形”、“数→数”的抽象思维,因其数形知识有了一定积累后,几何直观图形感知能力,逻辑思维能力已有一定程度的发展。他们在观察、分析、思考题目后,对于简单的图,不一定每次都要画出来。数量关系式、图形能用“脑图”表现出来再好不过,“脑图”才是我们最美好的追求。我们要做的,就是将数与形的知识结合起来,降低学生的认知难度,使问题迎刃而解。对于学习有困难的学生,应视其情况,降低层次,回溯到相应的基础上再予以教学。
五、总结
数学是表达具体事物的数量关系的,同时它还具有空间的特点,现实世界中,形和数是客观存在的,所以在数学上运用数形结合思想去解决问题既符合客观事物的发展规律又符合人们的需求。小学数学教学中,老师要站在教材的基础上,紧密联系数学得到发展,在教学的设计、方法、手段等方面运用数形结合的方法,使学生用它解决更多的问题。
参考文献:
[1]王静.例谈小学低年级数学教学中数形结合思想的渗透[J].考试周刊,2013(11):82-83.
[2]王珍.让直观与抽象交相辉映[J].福建教育,2008,(6).
[3]顾娟.浅析小学数学课堂中的“数形结合”[J].小学教学参考,2009,(3).
关键词:数形结合;小学数学;数感;算理
“空间与图形”是小学数学教学中的重要内容之一,在以后的学习中体现得更为明显。数形结合带给教学以蓬勃之生命,赋予教学以持续性的活力,使有效教学的策略更丰富,更清晰。
一、营造乐学的有效教学情境
新课改教材里各种鲜艳逼真的情境图,各种平移、旋转、对称的美丽图案,可以让学生真切地体会到了数学的美,受到美的熏陶。因此,在教学《分数的初步认识》时,与学生互相问好后,笔者设计了“分数乐园”这个孩子特别喜欢的卡通画面,可是“智慧大门”却关闭着。生动形象的动画谜语,一下子就吸引了孩子们的目光。成功地激发学生的挑战精神和战胜困难的斗志。学生猜对后,引出生活中分东西的经验,自然而然地导出课题“认识几分之一”。笔者利用信息技术资源,创设了一个生动有趣的故事情境,引出孩子们特别熟悉和喜欢的——“分数乐园里智勇闯三关”的游戏,使学生们的自主参与意识自然而然的产生,主动探索,学习新知。
二、看图说话,先学后导
概念的引入将直接关系到学生对概念的理解和接受,在概念的引入过程中,要注意使学生建立清晰的表象。而表象的建立,是以对所感知材料的观察和分析为基础的。图形演示是小学数学概念引入教学中最常用的方法,因为小学生的思维还停留在形象思维的阶段,他们对抽象的概念的理解需要借助丰富的感性材料。在小学数学概念教学中,如果能够建立抽象的数学概念与形象的图形之间的联系,把数学概念中本质的属性用恰当的图形演示出来,把数和形结合起来,就可以丰富学生的感性材料,为建构数学概念奠定基础。学生对所学数学概念就容易理解和掌握。数形结合就是把抽象的数学语言、数量关系与直观的图形、位置关系结合起来,通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化。俗话说:“数无形,少直观,形无数,难入微”,数和形是数学研究的两个对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化,形象化,简单化,特别是在解决问题过程中借助线段图解决复杂的数量关系;另一方面,復杂的形体可以用简单的数量关系表示。
三、数形结合,不忘操作
根据新课程标准的要求,笔者在本课中设计了“折一折”这个游戏环节。让学生通过自己动手操作折纸,来突破难点,完成“把一个整体平均分成几份,一份就是它的几分之一”的转化过程。学生兴致勃勃地在“折一折”中玩起了折纸游戏,使他们在玩中发现问题,开动脑筋想办法解决问题。同时,笔者还设置了“快乐猜猜猜”的小游戏,让孩子们在玩中体验数学知识,运用数学知识。
(一)强化认识,完整叙述
由平均分实物导出,图形也可以平均分成2份,其中一份就是它的1/2。要求学生利用自己喜欢的图形(包括长方形、正方形和圆)折出它的1/2。引导学生动手操作,在小组合作中解决疑难。通过进行比较交流,说一说:你拿的是什么图形?如何得到它的二分之一?哪部分是它的二分之一。使学生能够完整叙述1/2的含义,提高表达能力。这个过程不但培养了学生的自主学习的能力,激发了学生主动参与的意识,还让他们明白数学无处不在,源于我们的生活。最后,在共同交流,检查所学习的新知识,达到锻炼学生语言表达能力的目的。
(二)动手操作,促进内化
紧接着,顺势引导:你能继续折出这个图形的1/4吗?引发学生继续探索新知的欲望,逐层深入的诱导新知。交流汇报意义后,课件引出长方形的4种不同的折法,引导学生思考:为什么涂色部分都可以用1/4来表示呢?让学生体会到:虽然纸的形状不同、折法不同,但把这张纸都“平均分”成了4份,所以每一份就表示这张纸的四分之一。这个过程由浅入深地逐层深入,学生自主探索,欲望强烈,解决了疑难问题,使他们充分地体验到了成功。
(三)顺势引路,巧妙迁移
认识了二分之一和四分之一,你还想认识几分之一呢?让孩子们乘胜追击,继续研究各种几分之一。顺势教师要求:你能试着折一折,涂一涂表示出你想认识的几分之一吗?拿出学具袋中的材料,每人选择一样试一试。经过折涂,学生之间的交流介绍,让学生展示并解说成果。通过变换板书的数字,引导学生讨论:你发现了什么?师提示:把一个图形平均分成3份,每一份是它的三分之一,那平均分成5份、6份、100份呢?学生总结出:把一个整体平均分成几份,一份就是它的几分之一。锻炼他们语言能力的同时,培养了学生们的逻辑思维能力。
四、分层把握数形结合
低段学生及图形建构差的学生适宜“形→数”的直观思维,其教学大多以观察、操作等活动开始,在感知和积累了大量空间图形的具体形象及抽象化图形后,自然过渡到复杂、抽象的图形学习。高段的学生适宜“数→形”、“数→数”的抽象思维,因其数形知识有了一定积累后,几何直观图形感知能力,逻辑思维能力已有一定程度的发展。他们在观察、分析、思考题目后,对于简单的图,不一定每次都要画出来。数量关系式、图形能用“脑图”表现出来再好不过,“脑图”才是我们最美好的追求。我们要做的,就是将数与形的知识结合起来,降低学生的认知难度,使问题迎刃而解。对于学习有困难的学生,应视其情况,降低层次,回溯到相应的基础上再予以教学。
五、总结
数学是表达具体事物的数量关系的,同时它还具有空间的特点,现实世界中,形和数是客观存在的,所以在数学上运用数形结合思想去解决问题既符合客观事物的发展规律又符合人们的需求。小学数学教学中,老师要站在教材的基础上,紧密联系数学得到发展,在教学的设计、方法、手段等方面运用数形结合的方法,使学生用它解决更多的问题。
参考文献:
[1]王静.例谈小学低年级数学教学中数形结合思想的渗透[J].考试周刊,2013(11):82-83.
[2]王珍.让直观与抽象交相辉映[J].福建教育,2008,(6).
[3]顾娟.浅析小学数学课堂中的“数形结合”[J].小学教学参考,2009,(3).