论文部分内容阅读
研究了一种基于卷积盲分离算法与MFCC(Mel-Frequency Cepstral Coefficient)特征相结合的噪声鲁棒语音识别方法。该方法在预处理阶段,首先计算预白化观测数据的多阶自相关协方差矩阵,以获得多时延处理的二阶解相关统计信息。然后利用得到的二阶统计信息构建两个对称正定矩阵,通过Cholesky因式分解等一系列变换获得唯一存在的矩阵,根据此矩阵估算语音信号并提取MFCC特征用于后续识别。实验结果表明,在低信噪比条件下,该方法对于数字语音的识别性能优于基本的MFCC识别器和文献中已有的卷