论文部分内容阅读
针对当前压缩感知重构算法存在重构质量偏低、重构时间过长等问题,提出了基于矩阵流形分离字典构造的分块压缩感知重构算法。首先,该算法基于矩阵流形模型训练出可分离稀疏表示矩阵,并对其正交化;其次,构造随机测量矩阵,并利用矩阵运算将其与得到的稀疏表示矩阵进行结合,进而构造出一组分离字典;最后,将该字典用于信号压缩感知中,并通过线性运算实现信号的快速重构。实验结果表明,与当前主流的压缩感知重构算法相比,所提算法在重构精度以及重构时间上都具有一定提升,并在对实时性要求高的领域中具有很好的应用价值。