论文部分内容阅读
金融资产的时变协方差矩阵是投资组合配置、风险管理等实务活动的关键参数。早期的协方差预测模型研究使用日数据或者更低频数据,但大多存在参数估计困难和维数灾难等问题。运用日内高频数据可以构建协方差矩阵的后验非参数估计量,使其从隐变量转变为可以直接建模的可观测变量,降低协方差模型估计的复杂性并增强模型的高维适用性。进一步的,利用高频数据还可以识别多个金融资产的价格在日内同一采样间隔内发生的跳跃,即多资产联跳。针对联跳多由宏观经济新闻公告和政策制度等的发布引起,这些信息终将被吸收并体现在协方差矩阵中,联跳可能蕴含着