论文部分内容阅读
研究工业控制领域的优化控制问题,工业控制对象具有强耦合特性,传统方法无法对其进行精确解耦,导致系统控制精度比较低。为提高工业控制系统的控制精度,提出一种PID控制和神经网络相融合的控制方法。利用PID优良动态控制特性和BP神经网络非线性控制特性对控制系统进行解耦,在权值调整算法式中加入增大动量项,提高网络学习效率,并采用粒子群算法优化权值初始值,提高控制精度,减少振荡产生。在MATLAB环境下,对非线性控制系统进行仿真研究,仿真结果表明,PID神经网络提高系统的抗干扰能力,提高系统控制精度,能够对系