论文部分内容阅读
近年来人脸检测在使用深度学习方法的情况下,取得了显著的突破.然而人脸检测在CPU上实时运行并且保持很高的精度依然是一个很大的挑战.本文提出一种轻量的卷积网络模型,可以加快卷积神经网络提取特征的速度;对相邻卷积层进行特征融合,在融合后的多个卷积层检测人脸;为了使每一层的anchor密度相同,对anchor做了稠密化处理;修改了人脸检测分类损失函数,使其更关注比较难分类的样本.在公开数据集FDDB的实验表明,在本文提出的神经网络模型下准确率达到了95. 9%,并且可以在CPU上实时检测.