论文部分内容阅读
针对磁共振成像(MRI)前列腺肿瘤感兴趣区域(ROI)在高维特征表示下存在特征相关和维数灾难问题,提出了一种基于主成分分析(PCA)的特征级融合神经网络(NN)的MRI前列腺肿瘤CAD模型。首先提取MRI前列腺肿瘤ROI的6维几何特征、6维统计特征、7维Hu不变矩特征、56维灰度共生矩阵的纹理特征、3维Tamura纹理特征和24维频域特征,得到102维特征矢量;然后通过PCA进行特征级融合得到累计贡献率达到89.62%的8维变换特征,降低特征矢量的维数;再次利用经典的神经网络(四种训练算法BFGS拟牛顿算