论文部分内容阅读
决策树是数据挖掘的一种重要方法,通常用来形成分类器和预测模型。ID3算法作为决策树的核心算法,由于它的简单与高效而得到了广泛的应用,然而它倾向于选择属性值较多的属性作为分支属性,从而可能错过分类能力强的属性。对ID3算法的分支策略进行改进,增加了对属性的类区分度的考量。经实验比较,新方法能提高决策树的精度,简化决策树。