论文部分内容阅读
有关专家表明,从2004年印尼海啸开始,到2018年,全球进入特大地震频发期。
据地震仪的记录统计,世界上每年发生的地震,约有500万次,其中有感地震仅为5万多次,那些造成破坏性较大的7级以上的地震,平均每年有十几次,而8级以上的特大地震平均每年只有1次左右。可见地震越大,发生的机会就越少,地震增加一级,地震发生的机会约少十分之九。
记得初中课本上,我们学过世界有三大地震带:环太平洋火山地震带、地中海—喜马拉雅地震带和大洋海岭地震带,中国地震局研究员何永年认为大洋海岭地震带根本没法和前两条地震带相比,因为前两条地震带地震时释放的能量已占去全球地震总能量的95%。
环太平洋地震带的东岸由阿留申群岛经阿拉斯加、加利福尼亚湾一带、墨西哥-中美诸国,直至南美洲的智利;西岸包括堪察加半岛、千岛群岛、日本、菲律宾、西南太平洋诸岛,直至新西兰,全长约35000多公里。其中以日本、堪察加半岛和智利一带最为强烈。这条地震带所释放的地震能量约占全球地震总能量的80%,单是日本一国发生的地震,释放的地震能量就占全球总能量的10%。
在这条带上,特别是它的西侧,有一系列的岛弧,以日本列岛中的本州岛到马里亚纳群岛之间最为典型。岛弧的外侧紧邻着一条深度8500米以上的海沟,其中马里亚纳海沟的深度甚至达到11034米。南美安第斯山脉紧贴着智利海沟,它们之间的高差达到14000米,这个相对高差之大,清楚地说明了这些地区是地壳比较活跃和脆弱的地方,因此也是易于发生地震的地方。
20世纪以来世界上最大的地震就是1960年5月22日的智利大地震,震级高达9.5级,并且1个月内发生2次大于8级的,10多次大于7级的地震。巨大的地震不但使得6座火山再次喷发,而且形成了3座新火山,把智利国土面貌都改变了。
如果你发现自己的家园恰好不在这三条地震带上,就以为可以高枕无忧的话,那也错了。地球上有些地震就是发生在比较稳定的地块上的,譬如在亚洲中部,我国华北地区1966年到1976年发生的一些大地震就属于这类情况。
地震为什么发生在这些地方
这些地震带都有个共同的特点:在地势起伏上特别强烈;分布在这些地带上的山脉,在地质构造上都是年轻的山脉,这两项基本事实表示了地震带本身就是构造运动强烈的地带。
地震是板块运动的结果,大板块的分界带都是大地震活动带,环太平洋地震带是太平洋板块西与欧亚和澳大利亚板块、东与美洲板块、南与南极板块的分界带;地中海-喜马拉雅地震带是欧亚板块与非洲和澳大利亚板块的分界带,海岭地震带是由海岭和转换断层构成的大板块的分界带。
那些不是发生在地震带上的地震又如何解释?陆地上现代地壳张裂的地带,也是地震活动的“高发区”。这种地震活动主要集中在裂谷带内,譬如有“地球伤疤”之称的东非大裂谷。俄罗斯广袤的土地大部分位于亚欧板块中间,按理说地质运动应该比较稳定,但贝加尔裂谷却是大陆内部有名的地震带,1957年贝加尔湖东北端曾经发生过7.5级地震。
有些大陆内部,虽然也是由坚硬的大陆地壳组成,但由于内部破碎,分布着众多的断层,这些断层本来“休眠”着,后来又重新活动,因此也容易发生大地震。这类地震称板内地震,如中国的华北地区、蒙古杭爱山区、澳大利亚、印度和美国东部地区。可是,也有专家认为,亚欧板块内部地震浅、多而且分散,还有些是大于8级的特大地震,它们发生在离板块边缘1000多公里的板块内部,所以有人将这些发生在大陆内部的地震称为“板内地震”或“大陆地震”。对这些现象,目前的解释还是很难让人信服的,特别是关于板块运动的原动力、板块运动过程等一系列的问题,还需要进一步研究。
地震也会定向“迁徙”
全球地震活动在空间上和时间上的分布有没有规律?这是地震学家正在探索的一个重大问题。
土耳其北安纳托利亚地震带在1939-1967年间,大于(含等于)7级的地震自东经40°开始以每年约80公里的速度向西迁移,被认为是最典型的地震迁移现象的实例,逐次发生的地震在地表造成的破裂大体首尾衔接。地震迁移的实质就是构造断裂带的定向延伸,这也意味着一次地震迁移过程代表着一次已经锁闭的断裂再次活动的过程,该断裂带活动后会重新积累应力,蓄势待发再开始下一轮的活动。
中国地震局地质研究所马宗晋院士对全球尺度的6条大地震带内1900-1990年中184次震级大于7.75级的地震进行了沿地震带方向定向迁移的分析,认为那个阶段全球地震的总体,如欧亚地震带、菲律宾-新赫布里底群岛地震带、琉球群岛-堪察加半岛地震带和阿留申群岛-阿拉斯加地震带的地震迁移方向基本上是自西向东(南美洲地震带例外),看来表面上杂乱无章的地震活动,仍然存在着一定的联系。
在这个基础上,中国地震局的李献智和张国民进一步分析出中国大陆地震带的地震迁移方向总趋势与全球是比较一致的,表明中国大陆和全球地震活动有一定关系。由于中国大陆处于欧亚地震带地震流的中下游地域,应该说欧亚地震带的地震活动会更直接影响中国大陆的地震活动。欧亚地震带内的印度板块北界地区的地震活动与中国大陆地震高潮期具有同步性,其中兴都库什地区发生在中国大陆平静期中的中深源地震,对预测中国大陆地震高潮期的开始具有前兆意义,而同样位于印度板块北界的缅甸中深源地震与中国大陆地震也有较强的相关性。
中国随同世界一道进入地震活跃期
一般认为,全球地震有活跃期,也有平静期。在上个世纪70年代以前,每个地震的活跃期延续3至4年,它们之间就是地震活动的平静期,通常为3到5年,多的是10年。最近,中外学者纷纷发表言论称地球已经进入新一轮地震频发期,吉林大学地球探测科学与技术学院教授杨学祥根据天文学、气象学、海洋学的数据,通过数学、物理模型的模拟计算,认为从2004年印尼海啸开始,到2018年,全球进入特大地震频发期。
就在汶川地震发生不久前,俄罗斯科学家也预言2018年前世界将发生大地震,破坏力堪比2004年的印尼海啸。该结论是基于俄地震学家所研制出的一种能记录地震生成过程并预测地震的模型,他们发明的“M 8S计算法”可以对地震进行中期(几年内)预测。俄罗斯科学家推测这场地震的震中可能位于以下5个地区之一:美国和加拿大西部交界带、智利、克什米尔、印尼苏门答腊岛和安达曼群岛附近的印度洋。专家还发现,大地震具有明显的周期性,在周期的末期地震的活动会加强。例如,20世纪所有4场特大地震都发生在一个很短的时期内:1952年堪察加发生9级地震,1957年阿拉斯加安德烈亚诺夫群岛发生9.1级地震,1960年智利发生9.5级地震,1964年阿拉斯加威廉王子海峡发生9.2级地震。现在,在他们所研究的半径3000公里范围内的262个周期中,有124个地震周期出现活动加强的征兆。
无独有偶,就在这则新闻发布的前一个月,美国地质勘探局指出,加利福尼亚州在未来30年内发生能造成大面积破坏的强地震的可能性为99%。科学家设计了一种新模型,以研究大地震的发生几率。他们发现,加州在2038年前不发生6.7级地震的几率只有1%;同一期间,加州发生7.5级以上大规模地震的几率预计为46%,加州南部人口稠密地区遭遇地震的可能性最大。这一预测是美国科学家根据他们设计的新模型做出的,新模型综合了地震学、地震地质情况和地球表面精确测量数据等各种信息,以预报发生大型地震的可能性。地质学家甚至推算出,加州最可能发生地震的地区位于洛杉矶以东里弗赛德县的圣安德烈斯断层南段。
如果说地球真的进入地震频发期,那么汶川大地震可能就是其中一环,也许是2004年印度洋地震海啸的某种能量上的转移和呼应。
据地震仪的记录统计,世界上每年发生的地震,约有500万次,其中有感地震仅为5万多次,那些造成破坏性较大的7级以上的地震,平均每年有十几次,而8级以上的特大地震平均每年只有1次左右。可见地震越大,发生的机会就越少,地震增加一级,地震发生的机会约少十分之九。
记得初中课本上,我们学过世界有三大地震带:环太平洋火山地震带、地中海—喜马拉雅地震带和大洋海岭地震带,中国地震局研究员何永年认为大洋海岭地震带根本没法和前两条地震带相比,因为前两条地震带地震时释放的能量已占去全球地震总能量的95%。
环太平洋地震带的东岸由阿留申群岛经阿拉斯加、加利福尼亚湾一带、墨西哥-中美诸国,直至南美洲的智利;西岸包括堪察加半岛、千岛群岛、日本、菲律宾、西南太平洋诸岛,直至新西兰,全长约35000多公里。其中以日本、堪察加半岛和智利一带最为强烈。这条地震带所释放的地震能量约占全球地震总能量的80%,单是日本一国发生的地震,释放的地震能量就占全球总能量的10%。
在这条带上,特别是它的西侧,有一系列的岛弧,以日本列岛中的本州岛到马里亚纳群岛之间最为典型。岛弧的外侧紧邻着一条深度8500米以上的海沟,其中马里亚纳海沟的深度甚至达到11034米。南美安第斯山脉紧贴着智利海沟,它们之间的高差达到14000米,这个相对高差之大,清楚地说明了这些地区是地壳比较活跃和脆弱的地方,因此也是易于发生地震的地方。
20世纪以来世界上最大的地震就是1960年5月22日的智利大地震,震级高达9.5级,并且1个月内发生2次大于8级的,10多次大于7级的地震。巨大的地震不但使得6座火山再次喷发,而且形成了3座新火山,把智利国土面貌都改变了。
如果你发现自己的家园恰好不在这三条地震带上,就以为可以高枕无忧的话,那也错了。地球上有些地震就是发生在比较稳定的地块上的,譬如在亚洲中部,我国华北地区1966年到1976年发生的一些大地震就属于这类情况。
地震为什么发生在这些地方
这些地震带都有个共同的特点:在地势起伏上特别强烈;分布在这些地带上的山脉,在地质构造上都是年轻的山脉,这两项基本事实表示了地震带本身就是构造运动强烈的地带。
地震是板块运动的结果,大板块的分界带都是大地震活动带,环太平洋地震带是太平洋板块西与欧亚和澳大利亚板块、东与美洲板块、南与南极板块的分界带;地中海-喜马拉雅地震带是欧亚板块与非洲和澳大利亚板块的分界带,海岭地震带是由海岭和转换断层构成的大板块的分界带。
那些不是发生在地震带上的地震又如何解释?陆地上现代地壳张裂的地带,也是地震活动的“高发区”。这种地震活动主要集中在裂谷带内,譬如有“地球伤疤”之称的东非大裂谷。俄罗斯广袤的土地大部分位于亚欧板块中间,按理说地质运动应该比较稳定,但贝加尔裂谷却是大陆内部有名的地震带,1957年贝加尔湖东北端曾经发生过7.5级地震。
有些大陆内部,虽然也是由坚硬的大陆地壳组成,但由于内部破碎,分布着众多的断层,这些断层本来“休眠”着,后来又重新活动,因此也容易发生大地震。这类地震称板内地震,如中国的华北地区、蒙古杭爱山区、澳大利亚、印度和美国东部地区。可是,也有专家认为,亚欧板块内部地震浅、多而且分散,还有些是大于8级的特大地震,它们发生在离板块边缘1000多公里的板块内部,所以有人将这些发生在大陆内部的地震称为“板内地震”或“大陆地震”。对这些现象,目前的解释还是很难让人信服的,特别是关于板块运动的原动力、板块运动过程等一系列的问题,还需要进一步研究。
地震也会定向“迁徙”
全球地震活动在空间上和时间上的分布有没有规律?这是地震学家正在探索的一个重大问题。
土耳其北安纳托利亚地震带在1939-1967年间,大于(含等于)7级的地震自东经40°开始以每年约80公里的速度向西迁移,被认为是最典型的地震迁移现象的实例,逐次发生的地震在地表造成的破裂大体首尾衔接。地震迁移的实质就是构造断裂带的定向延伸,这也意味着一次地震迁移过程代表着一次已经锁闭的断裂再次活动的过程,该断裂带活动后会重新积累应力,蓄势待发再开始下一轮的活动。
中国地震局地质研究所马宗晋院士对全球尺度的6条大地震带内1900-1990年中184次震级大于7.75级的地震进行了沿地震带方向定向迁移的分析,认为那个阶段全球地震的总体,如欧亚地震带、菲律宾-新赫布里底群岛地震带、琉球群岛-堪察加半岛地震带和阿留申群岛-阿拉斯加地震带的地震迁移方向基本上是自西向东(南美洲地震带例外),看来表面上杂乱无章的地震活动,仍然存在着一定的联系。
在这个基础上,中国地震局的李献智和张国民进一步分析出中国大陆地震带的地震迁移方向总趋势与全球是比较一致的,表明中国大陆和全球地震活动有一定关系。由于中国大陆处于欧亚地震带地震流的中下游地域,应该说欧亚地震带的地震活动会更直接影响中国大陆的地震活动。欧亚地震带内的印度板块北界地区的地震活动与中国大陆地震高潮期具有同步性,其中兴都库什地区发生在中国大陆平静期中的中深源地震,对预测中国大陆地震高潮期的开始具有前兆意义,而同样位于印度板块北界的缅甸中深源地震与中国大陆地震也有较强的相关性。
中国随同世界一道进入地震活跃期
一般认为,全球地震有活跃期,也有平静期。在上个世纪70年代以前,每个地震的活跃期延续3至4年,它们之间就是地震活动的平静期,通常为3到5年,多的是10年。最近,中外学者纷纷发表言论称地球已经进入新一轮地震频发期,吉林大学地球探测科学与技术学院教授杨学祥根据天文学、气象学、海洋学的数据,通过数学、物理模型的模拟计算,认为从2004年印尼海啸开始,到2018年,全球进入特大地震频发期。
就在汶川地震发生不久前,俄罗斯科学家也预言2018年前世界将发生大地震,破坏力堪比2004年的印尼海啸。该结论是基于俄地震学家所研制出的一种能记录地震生成过程并预测地震的模型,他们发明的“M 8S计算法”可以对地震进行中期(几年内)预测。俄罗斯科学家推测这场地震的震中可能位于以下5个地区之一:美国和加拿大西部交界带、智利、克什米尔、印尼苏门答腊岛和安达曼群岛附近的印度洋。专家还发现,大地震具有明显的周期性,在周期的末期地震的活动会加强。例如,20世纪所有4场特大地震都发生在一个很短的时期内:1952年堪察加发生9级地震,1957年阿拉斯加安德烈亚诺夫群岛发生9.1级地震,1960年智利发生9.5级地震,1964年阿拉斯加威廉王子海峡发生9.2级地震。现在,在他们所研究的半径3000公里范围内的262个周期中,有124个地震周期出现活动加强的征兆。
无独有偶,就在这则新闻发布的前一个月,美国地质勘探局指出,加利福尼亚州在未来30年内发生能造成大面积破坏的强地震的可能性为99%。科学家设计了一种新模型,以研究大地震的发生几率。他们发现,加州在2038年前不发生6.7级地震的几率只有1%;同一期间,加州发生7.5级以上大规模地震的几率预计为46%,加州南部人口稠密地区遭遇地震的可能性最大。这一预测是美国科学家根据他们设计的新模型做出的,新模型综合了地震学、地震地质情况和地球表面精确测量数据等各种信息,以预报发生大型地震的可能性。地质学家甚至推算出,加州最可能发生地震的地区位于洛杉矶以东里弗赛德县的圣安德烈斯断层南段。
如果说地球真的进入地震频发期,那么汶川大地震可能就是其中一环,也许是2004年印度洋地震海啸的某种能量上的转移和呼应。