论文部分内容阅读
针对人体行为数据的识别与分类问题,提出一种连续时变自编码机 (Continuous Time-va-rying Autoencoder, CTAE)模型.该模型在激活函数中增加高斯随机单元,强化对非线性连续型数据的特征学习与提取.在人体行为识别实验中,从原始数据信号中提取十维频域特征和四维时域特征;利用主成分分析(Principle Component Analysis,PCA)方法实现特征数据降维;针对预处理完的人体行为数据,训练由多个CTAE组成的深度信念网络(Deep Belief Network,