论文部分内容阅读
稀疏编码(SRC)是一种用于人脸识别的方法,该方法把检测图像表示为一组训练样本的稀疏线性组合,表示的准确性通过L2或L1残余项来衡量。此模型假定编码残余项服从高斯分布或拉普拉斯分布,实际上却不能很准确地描述编码错误率。为了解决这个问题,提出了一种新的稀疏编码方法,建立一种有约束的回归问题模型,用最大似然稀疏编码(MSC)寻找此模型的最大似然估计参数,对异常情况具有很强的鲁棒性。在Yale及ORL人脸数据库的实验结果表明了该方法对于人脸模糊、光照及表情变化等的有效性及鲁棒性。