论文部分内容阅读
电信用户欠费预测是一个不平衡数据集分类问题。针对传统支持向量机(SVM)对不均衡数据集中少数类检测精度低的问题,基于分类平面由边界样本的位置决定,提出了一种通过删除部分多数类边界样本的方法来改善传统SVM算法的不足,将该算法和其他几种算法在电信数据和多个不平衡UCI数据集上的实验结果进行对比,验证所提算法对少数类的检测精度和总体评价指标都有所提高。