论文部分内容阅读
Abstract:We consider a onedimensional bipolar isentropic quantum hydrodynamical model from semiconductor devices.First,we discuss the classical limit of the stationary solution.Then we discuss the classical limit of the nonstationary initial boundary problem for a onedimensional case in a bounded domain.We show that the solutions to the quantum hydrodynamic model of semiconductors approaches that to the hydrodynamic model of semiconductors as the scaled Planck constants ε tends to zero.
Key words:bipolar; quantum hydrodynamic model; classical limit
CLC number: O 29 Document code: A Article ID: 10005137(2015)02011111
References:
[1] GARDNER C.The quantum hydrodynamic model for semiconductors devices[J].Appl Math,1994,54:409-427.
[2] JNGEL A.Quasihydrodynamic semiconductor equations,Progress in Nonlinear Differential Equations[M].Boston:Birkhuser,2001.
[3] LUO T,NATALINI R,XIN Z.Large time behavior of the solutions to a hydrodynamic model for semiconductors[J].Appl Math,1998,59:810-830.
[4] NISHBATA S,SUZUKI M.Asymptotic stability of a stationary solution to a hydrodynamic model of semiconductors[J].Math,2007,44:639-665.
[5] NISHBATA S,SUZUKI M.Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductors[J].Arch Ration Mech Anal,2008,244:836-874.
[6] NATALIN Iatalini R.The bipolar hydrodynamic model for semiconductors and the driftdiffusion equation[J].Math Anal Appl,1996,198:262-281.
[7] HSIAO L,ZHANG K J.The relaxation of the hydrodynamic model for semiconductors to the driftdiffusion equations[J].Differential Equations,2000,165:315-354.
[8] HSIAO L,ZHANG K J.The global weak solution and relaxation limits of the initial boundary value problem to the bipolar hydrodynamic model for semiconductors[J].Math Models Methods Appl Sci,2000,10:1333-1361.
[9] ZHU C,HATTORI H.Stability of steady state solutions for an isentropic hydrodynamic model of semiconductors of two species[J].Differential Equations,2000,166:1-32.
[10] LATTANZIO C.On the 3D bipolar isentropic EulerPoisson model for semiconductors and the driftdiffusion limit[J].Math Models Methods Appl Sci,2000,10:351-360.
[11] GASSER I,MARCATI P.The combined relaxation and vanishing Debye length limit in the hydrodynamic model for semiconductors[J].Math Meth Appl Sci,2001,24:81-92.
[12] GASSER I,HSIAO L,LI H L.Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors[J].Differential Equations,2003,192:326-359. [13] HUANG F M,LI Y P.Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum[J].Dis Cont Dyn Sys,2009,24:455-470.
[14] ZHANG G J,LI H L,ZHANG K J.Semiclassical and relaxation limits of bipolar quantum hydrodynamic model for semiconductors[J].Differential Equations,2008,245:1433-1453.
[15] HUANG F,LI H L,MATSUMURA A.Existence and stability of steadystate of onedimensional quantum EulerPoisson system for semiconductors[J].Differential Equations,2006,225:1-25.
[16] LI H L,MARCATI P.Existence and asymptotic behaviour of multidimensional quantum hydrodynamic model for semiconductors[J].Math Phys,2004,245:215-247.
[17] NISHBATA S,SUZUKI M.Initial boundary value problems for a quantum hydrodynamic model of semiconductors:Asymptotic behaviors and classical limits[J].Differential Equations,2008,244:836-874.
[18] TSUGE N.Existence and uniqueness of stationary solutions to a onedimensional bipolar hydrodynamic models of semiconductors[J].Nonlinear Anal,2010,73:779-787.
[19] ZHOU F,LI Y P.Existence and some limits of stationary solutions to a onedimensional bipolar EulerPoisson system[J].Math Anal Appl,2009,351:480-490.
[20] LI Y P.Global existence and asymptotic behavior of smooth to a bipolar EulerPoisson equation in a bound domain[J].Math Phys Springer,2012,10:1125-1144.
摘要:考虑一维双极等熵量子力学模型.首先,对方程进行一些变形,利用Poincarés不等式及函数收敛和弱收敛的一些性质,得到了稳态解的经典极限,即当普朗克常量ε趋于0时,量子力学模型方程的稳态解趋于经典力学模型方程的稳态解.然后,利用非稳态解已有的一些结论和Sobolev不等式,Schwartz不等式,Gronwall不等式及一些能量估计,得到了非稳态解的经典极限,即量子力学模型方程的光滑解趋于经典力学模型方程的光滑解.
关键词:双极; 量子力学模型; 经典极限
(责任编辑:冯珍珍)
Key words:bipolar; quantum hydrodynamic model; classical limit
CLC number: O 29 Document code: A Article ID: 10005137(2015)02011111
References:
[1] GARDNER C.The quantum hydrodynamic model for semiconductors devices[J].Appl Math,1994,54:409-427.
[2] JNGEL A.Quasihydrodynamic semiconductor equations,Progress in Nonlinear Differential Equations[M].Boston:Birkhuser,2001.
[3] LUO T,NATALINI R,XIN Z.Large time behavior of the solutions to a hydrodynamic model for semiconductors[J].Appl Math,1998,59:810-830.
[4] NISHBATA S,SUZUKI M.Asymptotic stability of a stationary solution to a hydrodynamic model of semiconductors[J].Math,2007,44:639-665.
[5] NISHBATA S,SUZUKI M.Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductors[J].Arch Ration Mech Anal,2008,244:836-874.
[6] NATALIN Iatalini R.The bipolar hydrodynamic model for semiconductors and the driftdiffusion equation[J].Math Anal Appl,1996,198:262-281.
[7] HSIAO L,ZHANG K J.The relaxation of the hydrodynamic model for semiconductors to the driftdiffusion equations[J].Differential Equations,2000,165:315-354.
[8] HSIAO L,ZHANG K J.The global weak solution and relaxation limits of the initial boundary value problem to the bipolar hydrodynamic model for semiconductors[J].Math Models Methods Appl Sci,2000,10:1333-1361.
[9] ZHU C,HATTORI H.Stability of steady state solutions for an isentropic hydrodynamic model of semiconductors of two species[J].Differential Equations,2000,166:1-32.
[10] LATTANZIO C.On the 3D bipolar isentropic EulerPoisson model for semiconductors and the driftdiffusion limit[J].Math Models Methods Appl Sci,2000,10:351-360.
[11] GASSER I,MARCATI P.The combined relaxation and vanishing Debye length limit in the hydrodynamic model for semiconductors[J].Math Meth Appl Sci,2001,24:81-92.
[12] GASSER I,HSIAO L,LI H L.Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors[J].Differential Equations,2003,192:326-359. [13] HUANG F M,LI Y P.Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum[J].Dis Cont Dyn Sys,2009,24:455-470.
[14] ZHANG G J,LI H L,ZHANG K J.Semiclassical and relaxation limits of bipolar quantum hydrodynamic model for semiconductors[J].Differential Equations,2008,245:1433-1453.
[15] HUANG F,LI H L,MATSUMURA A.Existence and stability of steadystate of onedimensional quantum EulerPoisson system for semiconductors[J].Differential Equations,2006,225:1-25.
[16] LI H L,MARCATI P.Existence and asymptotic behaviour of multidimensional quantum hydrodynamic model for semiconductors[J].Math Phys,2004,245:215-247.
[17] NISHBATA S,SUZUKI M.Initial boundary value problems for a quantum hydrodynamic model of semiconductors:Asymptotic behaviors and classical limits[J].Differential Equations,2008,244:836-874.
[18] TSUGE N.Existence and uniqueness of stationary solutions to a onedimensional bipolar hydrodynamic models of semiconductors[J].Nonlinear Anal,2010,73:779-787.
[19] ZHOU F,LI Y P.Existence and some limits of stationary solutions to a onedimensional bipolar EulerPoisson system[J].Math Anal Appl,2009,351:480-490.
[20] LI Y P.Global existence and asymptotic behavior of smooth to a bipolar EulerPoisson equation in a bound domain[J].Math Phys Springer,2012,10:1125-1144.
摘要:考虑一维双极等熵量子力学模型.首先,对方程进行一些变形,利用Poincarés不等式及函数收敛和弱收敛的一些性质,得到了稳态解的经典极限,即当普朗克常量ε趋于0时,量子力学模型方程的稳态解趋于经典力学模型方程的稳态解.然后,利用非稳态解已有的一些结论和Sobolev不等式,Schwartz不等式,Gronwall不等式及一些能量估计,得到了非稳态解的经典极限,即量子力学模型方程的光滑解趋于经典力学模型方程的光滑解.
关键词:双极; 量子力学模型; 经典极限
(责任编辑:冯珍珍)