论文部分内容阅读
在小波分析和过程神经网络理论的基础上,提出了连续小波过程神经网络模型,其隐层为过程神经元,隐层激活函数采用小波函数.该网络结合了小波变换良好的时一频局域化性质及过程神经网络可以处理连续输入信号的特点,因而学习能力强,精度高.给出了小波过程神经网络学习算法,并以航空发动机滑油系统状态监测为例,分别利用传统BP网络和小波过程神经网络进行预测.结果表明,小波过程神经网络收敛速度快,精度高,优于BP网络的预测能力,同时也为航空发动机滑油系统状态监测问题提供了一种有效的方法.