论文部分内容阅读
在中弧线为四阶以下多项式的二维薄翼绕流问题的研究中,Multhopp离散超收敛性的证明展示了涡格法中优化的离散化格式的潜力。本文把这一研究扩展到中弧线为任意N阶多项式的二维薄翼绕流的一般情况。通过误差分析,证明了Multhopp离散对该问题可以得到离散化误差为零的翼面涡密度、升力和俯仰力矩,唯一的要求是使用的离散元数目应大于[(N+1)/2]。
In a study of the two-dimensional thin-winged flow around a polynomial with a camber line below the fourth order, the proof of Multhopp’s discrete superconvergence demonstrates the potential of the optimized discretization format in the vortex lattice method. This paper extends this study to the general case where the arc is a two-dimensional thin-walled flow around an arbitrary order N polynomial. Through error analysis, it is proved that the Multiv squeeze can obtain the vorticity, lift and pitching moment of the airfoil with zero discretization error. The only requirement is that the number of discrete elements used should be greater than [(N + 1) / 2].