论文部分内容阅读
布图规划在超大规模集成电路(VLSI)物理设计过程中具有重要作用,它是一个多目标组合优化问题且被证明是一个NP问题。为了有效解决布图规划问题,本文提出一个多目标粒子群优化(PSO)算法。该算法采用序列对表示法对粒子进行编码,根据遗传算法交叉算子的思想对粒子更新公式进行了修改;引入Pareto最优解的概念和精英保留策略,并设计了一个基于表现型共享的适应值函数以维护种群的多样性。仿真实验通过对MCNC标准问题的测试表明了本文算法是可行且有效的。