论文部分内容阅读
面向实际生产过程的软测量技术,融合了大量的现场数据,其中的任一异常数据(野值)的出现都可能导致模型的预测效果下降,甚至完全失败。由于实际测量数据不可避免地会带有误差,因此,对测量数据进行预处理非常重要。以制浆蒸煮过程纸浆Kappa值软测量模型为例,给出了一种综合判别异常样本数据的方法。该方法基于聚类分析和工艺机理发掘矛盾数据组,并结合回归分析和统计分析,定位异常样本数据并解释这些异常样本对建模的影响大小。以某造纸厂化浆车间的100组样本数据为对象进行分析,得到的异常样本及对建模的影响与专家经验分析相