论文部分内容阅读
针对直接甲醇燃料电池(DMFC)系统过于复杂,难以建模的特点,该文试图绕开DMFC的内部复杂性,基于实验数据,利用神经网络逼近任意复杂非线性函数的能力,将神经网络辨识方法应用到DMFC这种高度非线性系统的建模。以1000组电池电压、电流密度实验数据作为训练样本,采用基于LM算法的改进BP神经网络,建立了不同温度下电池电压-电流密度动态响应模型。仿真结果表明这种方法是可行的,建立的模型精度较高,它使得设计DMFC的实时控制器成为可能。