论文部分内容阅读
研究变压器故障准确诊断问题。通过对变压器油中溶解气体定性、定量地分析可及时发现变压器内部存在的潜伏性故障。但目前神经网络诊断方法存在收敛速度慢、不稳定问题,导致正确率低。为解决上述问题,提出了小生境遗传算法改进的神经网络模型。充分利用小生境遗传算法的搜索能力和神经网络的非线性映射和学习联想能力,用小生境遗传算法优化神经网络的初始权值和阈值,并对网络进行训练和测试。实验结果表明,与传统方法相比,改进模型有效提高了网络收敛速度、稳定性,提高了故障诊断正确率,具有很强的可行性和有效性。