论文部分内容阅读
Ultra Wideband (UWB) technology is promising for wireless personal area network (WPAN) applications due to its high data rate, low power requirement and short-range characteristics. Instead of exploring new unused frequency band, the UWB communication follows the overlay principle, i.e., sharing the spectrum with existing systems and devices. This novel radio technology has been recently approved by the regulatory authorities in the United States and Canada, and is being considered for approval in Europe and Asia. In this paper, an overview of the UWB radio technology from the technical, economical, and regulatory perspectives is provided. Firstly, the definition of UWB by the Federal Communications Commission (FCC) is introduced, followed by a brief introduction to the history. The current status of the standardization process resulting from the FCC’s recent decision to permit unlicensed operation in the [3.1 - 10.6] GHz band is discussed. Then, the reasons of considering UWB as a future solution for WLAN/WPAN applications are studied. In particular, the unique properties of UWB and its difference from other wireless technology alternatives are studied. Then, the benefits and challenges related to the commercial deployment of UWB for future applications are discussed. Finally, the research problems and challenges posed by the UWB technology are focused.
Instead of exploring new unused frequency band, the UWB communication follows the overlay principle, ie (UWB) technology is promising for wireless personal area network (WPAN) applications due to its high data rate, low power requirement and short-range characteristics. This sharing of spectrum with existing systems and devices. This novel radio technology has been recently approved by the regulatory authorities in the United States and Canada, and is being considered for approval in Europe and Asia. In this paper, an overview of the UWB radio The definition of UWB by the Federal Communications Commission (FCC) is introduced, followed by a brief introduction to the history. The current status of the standardization process resulting from the FCC’s recent decision to permit unlicensed operation in the [3.1 - 10.6] GHz band is discussed. Then, the reasons for considering UWB as af In particular, the unique properties of UWB and its difference from other wireless technology alternatives are studied. Then, the benefits and challenges related to the commercial deployment of UWB for future applications are discussed. Finally, the research problems and challenges posed by the UWB technology are focused.