论文部分内容阅读
对于离散分布、同位配置压电片驱动器和传感器的压电耦合板,首先构造了四节点 Kirchhoff矩形板弯单元,从而建立了有限元模型。在此基础上,给出了主动阻尼振动控制模型。将系统的存留能量指标归结为一个 Lyapunov 方程的解。以系统的存留能量指标为适应度函数,以作动器和传感器的位置及控制增益为优化参数,利用基于共享函数机制小生境技术的遗传算法进行结构、控制设计。最后,对一悬臂压电耦合板进行了实例分析。结果表明,该方法是解决控制结构一体化设计的一种有效途径,可以得到多个最优解或次优解。
For discretely distributed piezoelectric actuators with piezoelectric actuator and sensor in the same position, a four-node Kirchhoff rectangular plate bending unit is constructed, and a finite element model is established. On this basis, the active damped vibration control model is given. The energy retention of the system is reduced to a solution to the Lyapunov equation. Taking the system residual energy index as the fitness function and the actuator and sensor position and control gain as the optimization parameters, genetic algorithm based on the shared function mechanism niche technology was used to carry out the structural and control design. Finally, a cantilever piezoelectric coupling plate is analyzed. The results show that this method is an effective way to solve the integrated design of control and structure, and can obtain multiple optimal solutions or suboptimal solutions.