论文部分内容阅读
对偏最小二乘(PLS)回归的基本方法进行了分析研究,提出了基于非线性迭代偏最小二乘(NIPLS)的信息模式识别算法。该算法实现了模式识别中特征提取与分类器设计的有机结合。NIPLS较Fisher判别分析、Bayes判别分析等经典的模式识别算法,具有更强的信息识别能力,且对数据本身的分布要求不高,尤其对于多重共线性资料或解释变量多而样本数量少时更为有效。将该算法应用于土地质量的分类识别,结果表明,该文所建立的算法是有效的、可靠的。