论文部分内容阅读
为了提高航空弹药的供应保障效率,将变异粒子群优化(MPSO)融入深度神经网络(DNN),研究航空弹药训练消耗预测问题。通过DNN确定网络各层的最优激活函数,基于MPSO参数寻优得到网络各层最优的权值和阈值,进而构建MPSO与DNN融合的航空弹药训练消耗预测模型。实验研究表明,该文组合预测模型在对5年数据的预测中均方误差为0.000 9,与粒子群优化-深度神经网络(PSO-DNN)模型、DNN模型以及反向传播神经网络(BPNN)模型相比具有更好的预测性能。