论文部分内容阅读
本文算法基于目标检测模型Mask RCNN进行改进,改进后的模型能分割和标记出不同的猪个体并且能精确分割出猪头区域。首先选用Resnet50作为模型的特征提取网络,然后考虑到群养猪图像分割任务的特殊性,在区域建议网络(Region Proposal Networks, RPN)中引入感兴趣区域(Region of Interest, ROI)的非局部特征向量,最后为进一步提高分割掩模边缘精度,在ROI输出的掩模分支中提出使用sobel检测滤波器预测目标边缘,并在损失函数中加入边缘损失。实验选取100