论文部分内容阅读
为了验证Grad-CAM解释方法的脆弱性,提出了一种基于对抗补丁的Grad-CAM攻击方法。通过在CNN分类损失函数后添加对Grad-CAM类激活图的约束项,可以针对性地优化出一个对抗补丁并合成对抗图像。该对抗图像可在分类结果保持不变的情况下,使Grad-CAM解释结果偏向补丁区域,实现对解释结果的攻击。同时,通过在数据集上的批次训练及增加扰动范数约束,提升了对抗补丁的泛化性和多场景可用性。在ILSVRC2012数据集上的实验结果表明,与现有方法相比,所提方法能够在保持模型分类精度的同时,更简单有效