论文部分内容阅读
模糊聚类是一种非监督的聚类算法,但不能保证找到全局最小值,因为是从一个给定的点开始通过迭代的方法找到一个目标函数的最小值。为了克服这个缺点,在模糊聚类算法中结合遗传算法从一个多点的概念去产生多个数据空间。直接将遗传算法应用到模糊聚类中是不合适的,因为数据集通常是巨大的,在这种情况下,染色体的长度会很长。鉴于此,提出了一种基于遗传算法的分布式的模糊聚类算法,将大的进化环境分成若干个小的进化环境。通过理论证明是可行的,且该算法能极大地提高聚类的速度。