论文部分内容阅读
特征抽取是模式识别中的一个关键问题。文中提出一种改进的基于Gabor滤波器的特征抽取算法。该算法应用Gabor滤波器的多尺度特性与样本图像进行卷积,将得到的Gabor特征矢量,根据其邻近分量的离散程度进行加权处理。与传统方法相比,该算法可以有效增强离散程度相对较小的特征分量在分类中的作用,分类效果较好;同时充分利用样本图像的统计信息,具有一定的鲁棒性。将该算法应用于车辆检测系统中,数据表明其能有效降低车辆检测的错误率,增强系统的鲁棒性。