论文部分内容阅读
研究了支持向量机在面向对象土地覆被图像分类中的应用技术,提出采用最小二乘支持向量机(LSSVM)与模糊灰色关联度联合评估(FG)相结合的一种新的组合分类方法简记FG-LSSVM,为土地覆被分类提供一种可行的高精度分类途径。根据图像上不同对象的空间尺度和光谱值特征,基于稳健的核密度梯度分割算法提取具有任意形状和唯一标识的均质对象后,为了比较提出方法的性能,采用原始对象样本依次验证了3个面向对象分类方法,即标准支持向量机方法、以模糊贴近度作为模糊因子的模糊支持向量机方法和传统K最近邻面向对象分类方法。实