论文部分内容阅读
Poincaré不等式在调和分析、微分方程理论及其数值方法等领域的研究中具有极其重要的作用.但是,Poincaré不等式中最佳常数的确定问题至今仍然未被系统地研究过.运用Hilbert空间广义Fourier正交级数理论,时于一维区间和二维矩形区域上带有Dirichlet边界条件的函数,获得Poincaré不等式中的最佳常数.本方法可推广到高维空间中矩形区域上的问题.