论文部分内容阅读
类别不平衡数据的分类问题是数据挖掘及机器学习过程中的一个研究热点,基于代价敏感学习方法通常用于解决类别不平衡数据分类问题,然而,它在实际应用过程中通常因样本的误分类成本未知而受到限制.针对此问题,文中采用群体智能算法优化样本的误分类代价.果蝇优化算法(Fruit fly optimization algorithm,FOA)是一种全局优化群智能算法,该算法具有原理简单、调节参数较少、收敛速度较高等优点.本研究首先提出了一种基于动态调整寻优步长的果蝇优化算法;其次,利用此果蝇优化算法良好的全局和局部搜索性能