论文部分内容阅读
【目的】探究深度学习在柑橘Citrus spp.黄龙病症状识别上的可行性,并评估识别器的识别准确率。【方法】以黄龙病/非黄龙病引起的发病叶片图像及健康叶片图像为训练素材,基于卷积神经网络及迁移学习技术构建二类识别器(I-2-C和M-2-C)和八类识别器(I-8-C和M-8-C)。【结果】M-8-C模型的整体识别表现最优,对所有图像的识别准确率为93.7%,表明构建的神经网络识别器能有效辨别柑橘黄龙病症状;I-8-C和M-8-C对所有类型图像的平均F1分值分别为77.9%和88.4%,高于I-2-C(56.